Data science is a multidisciplinary blend of data inference, algorithm development, and technology in order to solve analytically complex problems.
Mathematics Expertise :-
At the heart of mining data insight and building data product is the ability to view the data through a quantitative lens. There are textures, dimensions, and correlations in data that can be expressed mathematically. Finding solutions utilizing data becomes a brain teaser of heuristics and quantitative technique. Solutions to many business problems involve building analytic models grounded in the hard math, where being able to understand the underlying mechanics of those models is key to success in building them.
Technology and Hacking :-
First, let's clarify on that we are not talking about hacking as in breaking into computers. We're referring to the tech programmer subculture meaning of hacking – i.e., creativity and ingenuity in using technical skills to build things and find clever solutions to problems.
Strong Business Sharpness :-
It is important for a data scientist to be a tactical business consultant. Working so closely with data, data scientists are positioned to learn from data in ways no one else can. That creates the responsibility to translate observations to shared knowledge, and contribute to strategy on how to solve core business problems. This means a core competency of data science is using data to cogently tell a story. No data-puking – rather, present a cohesive narrative of problem and solution, using data insights as supporting pillars, that lead to guidance.
0 Comments